

PRESENTATION 2 – HYDROPOWER COLLEGIATE COMPETITION

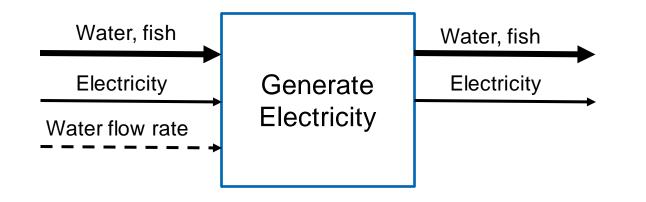
October 10th, 2023

Riley Frisell Evan Higgins Trevor Senior

PROJECT DESCRIPTION

Evan Higgins

• **Problem Statement:** Select and convert a US non-powered dam (NPD) into an efficient source of hydropower to address the nation's clean energy goals



Advisor/Client: Dr. Carson Pete

BLACK BOX MODEL

Specific dam models may include other material flows such as other passengers/cargo, as well as additional signal inputs/outputs depending on dam functions

Fig. 1 – Black Box Model of a simple hydropower plant

FUNCTIONAL MODEL

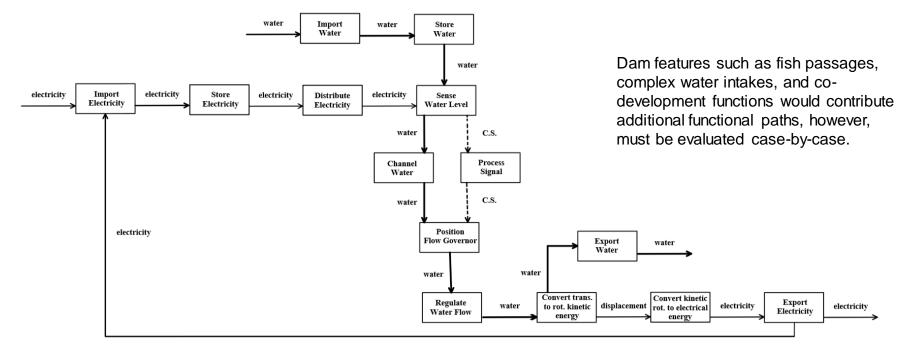


Fig. 2 - Functional Model of a simple, single turbine, hydropower plant

F23toSp24_06

Riley Frisell

CONCEPT GENERATION – MORPHOLOGICAL MATRIX

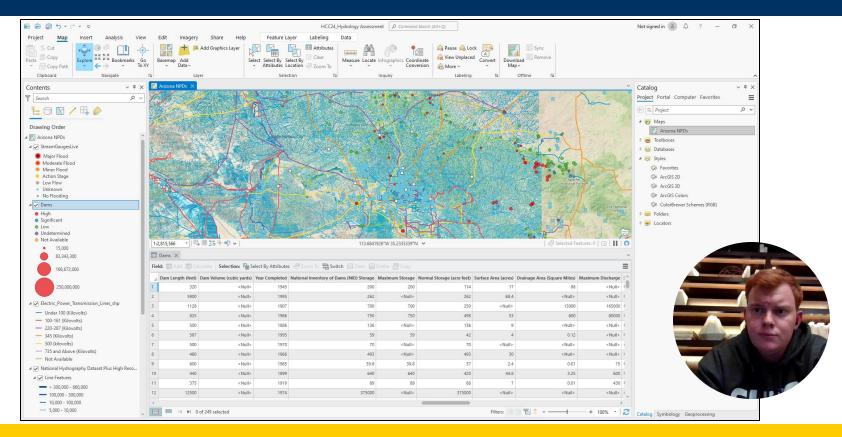
Concept	Option 1	Option 2	Option 3	Option 4
Dam Structure	Arch	Buttress	Rockfill	Gravity
The primary function is to resist the pressure of the water behind it				
Water intake	Capped intake	Intake tower	Direct flow intake structure	
Controlled and efficient utilization of the water coming out of the reservior				
Turbine	Francis	Pelton	Kaplan	
Converts the kinetic energy from the flowing water into mechanical energy for electricity generation				
Fish Passage	Juvenile Bypass System	Fish Ladder	Sluiceways	Spillway with raised Weir
Allows fish to pass through the dam without harming them				Constant States and States and St


Trevor Senior

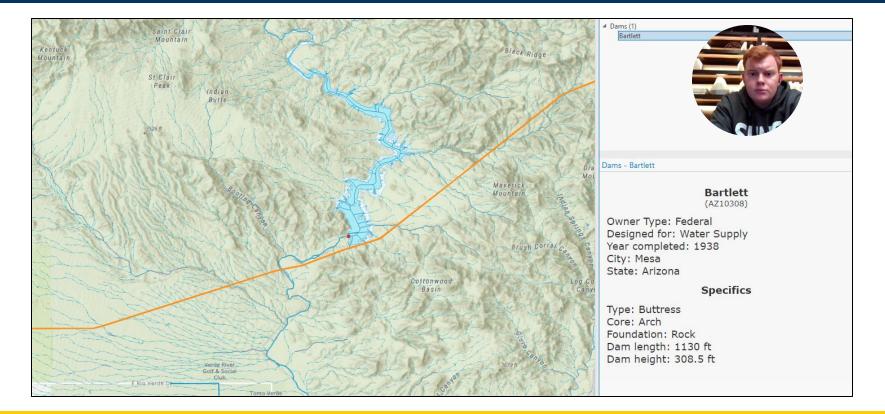
CONCEPT GENERATION – PUGH CHART

	Pugh Chart - Hydropower Collegiate Competition									
Dam	Dam Conversion Top Concepts									
			(Concept						
		1	2	3	4					
		Buttress, Capped Inate, Kaplan, Fish ladder	Arch, Intake Tower, Francis, Sluiceway	Gravity, Direct flow intake, Francis, Spillway with raised weir	Rockfill, Intake tower, Pelton, Juvenile Bypass System					
	Energy Production	S	P	+	-					
~	Environmental Impact Mitigation	+		+	S					
erio	Community Impact	-	A	-	S					
Criteria	Site Interconnectivity	S		-	S					
0	Cost	+	M	S	+					
	Structure	S	IVI	S	-					
	Sum of +'s	2		2	1					
	Sum of -'s	1		2	2					
	Sum of S's	3		2	3					
	Total	1		0	-1					

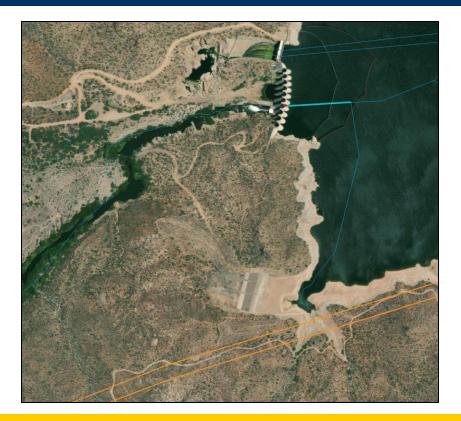
CONCEPT GENERATION CONTINUED


- Concept: Buttress, Capped Intake, Francis, Fish ladder
- Pros:
 - Energy production
 - Structure
 - Water storage
 - Site connectivity
 - Access
- Cons:
 - Environmental impacts
 - Build challenges
 - Cost

Bartlett Dam, Arizona


Trevor Senior

ENGINEERING MODEL – ARCGIS PRO


ARCGIS PRO – CONTINUED

F23toSp24_06

Evan Higgins

ARCGIS PRO – CONTINUED

Verde River Connector

Annual Mean Flow: 692 cfs Annual Mean Velocity: 4.33 f/s Slope: 14.9%

Data from the National Hydrography Dataset Plus High Resolution

> Voltage: 345 (Kilovolts) (Type: AC; Overhead)

Status: In Service Owner: Not Available NAICS Description: Electric Bulk Power Transmission And Control NAICS Code: 221121 Voltage Classification: 345 (Kilovolts) Substation 1: Preacher Canyon Substation 2: Pinnacle Peak Aps

Evan Higgins

CALCULATIONS – POTENTIAL ENERGY GENERATION

- Hydraulic Head Height
 - · Given that Hydraulic Height is not provided, use

 $\Delta H = (NID Height * 0.7)$

• Potential Hydropower Generation (MWh)

Potential Generation = $(Q * \Delta H * \eta * T) / 11,800$

- Assume $\eta = 0.85$, ΔH remains constant, all flow may be utilized for generation
- Capacity Factor

C_f = Annual Generation / (Installed Capacity * 365 * 24)

• Potential Capacity (MW)

Potential Capacity = Potential Generation (MWh) / (C_f * 365 * 24)

Input Variables								
Average Flow (Q)	692 ft ³ /s							
Gross Head (ΔH)	215.95 ft							
Generating Efficiency (η)	0.85 (unitless)							
Generation Period (T)	8760 hours							
Annual Generation	95,000 MWh							
Installed Max Capacity	17 MW							

Solutions							
Potential Generation	94,298	MWh					
Capacity Factor (C _f)	0.6379	(unitless)					
Potential Capacity	16.87	MW					

SPECIFICATION TABLES

Table 1: Bartlett Dam Specification Table

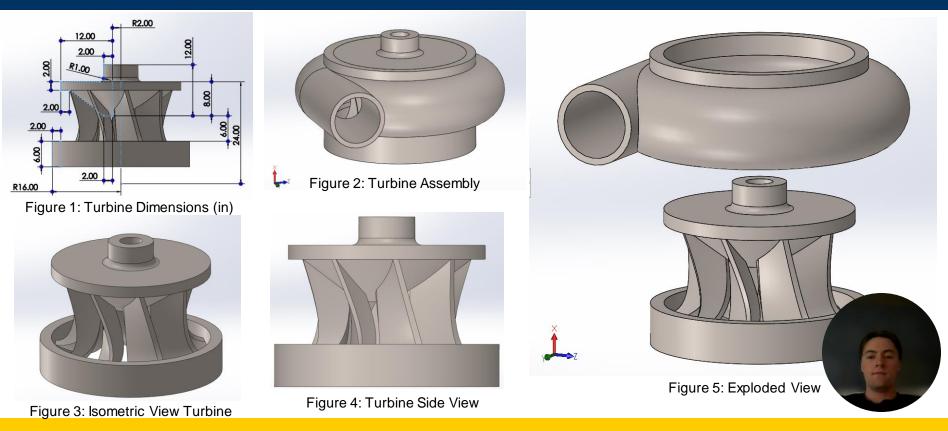
Estimated Potential Generation	94,298 MW
Estimated Potential Capacity	16.8743 MW
Max Height	308.5 ft
Dam Length	1,130 ft
Max Flow Rate (spill)	287,500 ft ³ /s
Annual Mean Flow Rate	692 ft ³ /s
Normal Storage	178,000 acre-feet
Built (original)	1936-1939
Renovated/Upgrades	1997
Estimated Turbine Efficiency	0.85 1 Francis Turbine
Federal Agency Owner	Bureau of Reclamation
Hazard Potential Classification	High
Primary Purpose	Irrigation Water Supply

Count of Owner Types			_	_	
	Primary Dam Type 💌	Risk Assessment 💌	Dam Name 🔻	Primary Purpose 💌	
Apache, Arizona					9
Cochise, Arizona					2
■ Coconino, Arizona					7
■Gila, Arizona					3
■ Graham, Arizona					6
Greenlee, Arizona					2
Imperial, California					1
■La Paz, Arizona	_		-		1
Maricopa, Arizona	⊟Buttress	■Very High (1)	Bartlett	Water Supply	1
			Bartlett Total		1
		Very High (1) Total			1
	Buttress Total				1
	⊟Earth	Moderate (3)	Thunderbird Park Reservoir		1
			Thunderbird Park Reservo	r Total	1
		Moderate (3) Total			1
	Earth Total				1
	■Gravity	■Moderate (3)	Camp Dyer Diversion	Irrigation	1
			Camp Dyer Diversion Total		1
		Moderate (3) Total			1
	Gravity Total				1
	Rockfill	■Very High (1)	Horseshoe	Irrigation	1
			Horseshoe Total		1
			■New Waddell	Flood Risk Reduction	1
			New Waddell Total		1
		Very High (1) Total			2
	Rockfill Total				2
Maricopa, Arizona Tot	al				5
■ Mohave, Arizona					1
Navajo, Arizona					8
Pima, Arizona					4
Pinal, Arizona					2
Riverside, California					1
■Santa Cruz, Arizona					2
					9
Grand Total					63

Figure 2: AZ NPD Data Summarized in Pivot Tables

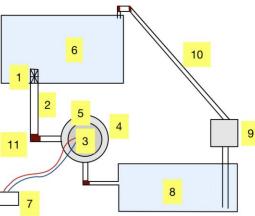
F23toSp24_06

Trevor Senior


DECISION MATRIX

Criterion		Bartlett Dam		Dam 2		Dam 3	
		Score out of 100	Weighted Score	Score out of 100	Weighted Score	Score out of 100	Weighted Score
1. Potential Energy	10%	100	10		0		0
2. Flow Rate	10%	95	9.5		0		0
3. Distance to Existing Infrastructure (transmission lines/substations)	10%	90	9		0		0
4. Distance to Alternative Energy Sources	5%		0		0		0
5. Distance to Nearest City	5%	45	2.25		0		0
6. Amount of watershed	7%		0		0		0
7. Dam Ownership Type	3%		0		0		0
8. Potential Environmental Impact	10%		0		0		0
9. Dam Integrity	4%	80	3.2		0		0
10. Cost of Development/Economic Viability	10%		0		0		0
11. Water Storage Capacity	6%	90	5.4		0		0
12. Availability of Historical Flow Data	4%		0		0		0
13. Accessibility (ease of access for construciton and maintenance)	5%		0		0		0
14. Local Community Support	7%		0		0		0
15. Technical Feasibility	4%		0		0		0
Total	1		39.35		0		0
Relative Rank			1		2		3

CAD MODEL – FRANCIS TURBINE ROUGH DRAFT


F23toSp24_06

Trevor Senior

BILL OF MATERIALS

Small scale enclosed hydropower system preliminary design

Item	Description	Specification	Quantity	Estimated Cost Per Part (\$)	Estimated Total Cost (\$)
1	Intake screen	Woven wire mesh	2	6.69	13.38
2	Penstock	10 ft PVC pipe	1	6.29	6.29
3	Turbine	Material TBD	1	50	50
4	Turbine Casing	Material TBD	1	30	30
5	Generator	Small turbine generator	1	40	40
6	Electrical Components	Wires, etc.		30	0
7	Upper water reservoir	Plastic bin	1	10	10
8	Lower water reservoir	Plastic bin	1	10	10
9	Tubing	Clear vinyl tubing	1	12.99	12.99
10	Pump system	Mini water pump	1	11.89	11.89
11	Pipe clamps and fittings	clamps, PVC elbows, etc.		40	184.55
				Total Cost	369.1

Trevor Senior

PROJECT BUDGET

ltem	Category	Description	Total
NREL Competition Funding	Funds	\$5,000 - Application Approval \$5,000 - Mid-year Submission \$5,000 - Final Submission *\$5,000 - Optional Build Submission	20000.00
%10 Self-Raised Funds	Funds		2000.00
		Estimated Funds	22000.00

Cost 1856
1056
1020
1022.11
257.6
3135.71

F23toSp24_06

$\frac{SU\underline{W}\underline{W}\underline{W}\underline{R}\underline{K}Y}{E\underline{s}\underline{s}\underline{m}\underline{a}\underline{t}\underline{e}\underline{d} F\underline{u}\underline{n}\underline{d}\underline{s}\underline{=} $222,2,000$ $\underline{E}\underline{s}\underline{s}\underline{m}\underline{a}\underline{t}\underline{e}\underline{d} C\underline{c}\underline{c}\underline{s}\underline{s}\underline{s}\underline{=} 5,0828,2.00$

Available Funds== \$18,99191300

ltem	Category	Description	Unit Cost		Quantity	Cost
Bill of Materials	Materials	*Refer to BOM	369.10		1	369.10
Shuttle Ticket	Travel - IA	Round trip, FLG/PHX [04/29, 05/02]	65.00	/person	7	455.00
Plane Ticket	Travel - IA	Round trip, PHX/DSM [04/29, 05/02]	438.00	/person	7	3066.00
Rental Car	Travel - IA	7 passenger vehicle [04/29 - 05/02]	99.00	/day	3	385.00
Hotel	Travel - IA	3 rooms, 3 nights [04/29 - 05/02]	89.00	/room/night	9	807.00
				Estin	nated Cost	5082.10

Riley Frisell

SCHEDULE

HCC24 - Task Status								
Task Name	% Complete	Finish	Health	Assigned To	oct1 WTFSS	Oct 8 SMTWTF	Oct 15 SSMTWTF	Oct 22 S S M T W T F S S M T
Website Development: Rough Draft	5%	10/13/23	•	Trevor Senior	W I I 3 3		Website Development: Rough	
Presentation 2 - Feedback to other teams	0%	10/13/23	•	Riley Frisell			Presentation 2 - Feedback to o	other teams
Peer Evaluatoin 2	0%	10/13/23	•				Peer Evaluatoin 2	
Add Presentation 1 Material	10%	10/17/23	•	Trevor Senior			Add Present	ation 1 Material
Website Development: Team Review	0%	10/18/23	•	Trevor Senior			Website	Development: Team Review
Research on economic impact and models	0%	10/20/23	•	Riley Frisell				Research on economic impact and models
Research on stakeholders and water rights	0%	10/20/23	•	Evan Higgins				Research on stakeholders and water rights
Environmental impacts research	0%	10/20/23	•	Trevor Senior				Environmental impacts research
Research on economic impact and models	0%	10/20/23	•	Evie Melahn				Research on economic impact and models
Research on economic impact and models	0%	10/20/23	•	Zonghua Ouya				Research on economic impact and models
Research on energy capacity: how much power does a community need/have?	0%	10/20/23	•	Winston Steele				Research on energy capacity: how much power
Website Development: Final Draft	0%	10/27/23	•	Trevor Senior				Website Develo

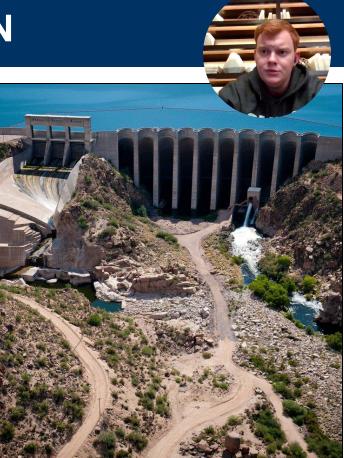
F23toSp24_06

Evan Higgins

CONCLUSION

ArcGIS mapping efforts have given us a solid foundation and project trajectory

Significant strides in project catch-up through collaboration



Next Steps: Focus on finalizing NPD selection and website advancement

F23toSp24_06

Goals: Use concept generation and research as head start for prototyping

Evan Higgins

THANK YOU!

